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In this paper, we present a new passive control device for form-drag reduction in flow
over a two-dimensional bluff body with a blunt trailing edge. The device consists of
small tabs attached to the upper and lower trailing edges of a bluff body to effectively
perturb a two-dimensional wake. Both a wind-tunnel experiment and large-eddy
simulation are carried out to examine its drag-reduction performance. Extensive
parametric studies are performed experimentally by varying the height and width of
the tab and the spanwise spacing between the adjacent tabs at three Reynolds numbers
of Re = u∞h/ν = 20 000, 40 000 and 80 000, where u∞ is the free-stream velocity and
h is the body height. For a wide parameter range, the base pressure increases (i.e.
drag reduces) at all three Reynolds numbers. Furthermore, a significant increase in
the base pressure by more than 30 % is obtained for the optimum tab configuration.
Numerical simulations are performed at much lower Reynolds numbers of Re= 320
and 4200 to investigate the mechanism responsible for the base-pressure increase by
the tab. Results from the velocity measurement and numerical simulations show that
the tab introduces the spanwise mismatch in the vortex-shedding process, resulting in
a substantial reduction of the vortical strength in the wake and significant increases
in the vortex formation length and wake width.

1. Introduction
Flow over a two-dimensional bluff body with a blunt trailing edge has a fixed

separation point at which the flow suddenly changes from a boundary-layer flow to
a wake. The Kármán vortex shedding in the wake causes the increase in the mean
drag and lift fluctuations on the body. Therefore, controls of flow over a bluff body
with a blunt trailing edge have been studied for drag reduction and/or lift fluctuation
reduction.

We may classify the control methods investigated so far into two groups:
(i) homogeneous (Wood 1964; Bearman 1965, 1967; Yao & Sandham 2002) and
(ii) inhomogeneous (Tanner 1972; Petrusma & Gai 1994; Tombazis & Bearman 1997)
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in the spanwise direction. In the first approach, a splitter plate (Bearman 1965; Yao &
Sandham 2002) and base bleed (Wood 1964; Bearman 1967; Yao & Sandham 2002)
were used to control the wake behind the blunt-based bluff body for drag reduction.
Since the base bleed was applied inside the recirculation region in Wood (1964),
Bearman (1967) and Yao & Sandham (2002), a relatively high blowing rate was
required for a successful drag reduction. In the latter approach, the flat base surface
of a bluff body was modified into a surface with spanwise modulation. For example,
Tanner (1972) considered various kinds of spanwise modulation of the trailing edge
such as segmented, curved and M-shaped trailing edges, and examined their drag-
reduction performances. Petrusma & Gai (1994) explored the possibility of drag
reduction using a segmented trailing edge for both laminar and turbulent separating
boundary layers and determined the optimal geometry of the rectangular segment.
Tombazis & Bearman (1997) installed a wavy trailing edge on a blunt-based bluff
body and found that the waviness of the trailing edge produces vortex dislocation
in the wake and thus the base pressure is increased. On the other hand, in the case
of a square or rectangular cylinder, separation occurs at the leading edge unless the
Reynolds number is low. Bearman & Owen (1998) introduced a spanwise waviness to
the front stagnation face of a rectangular cylinder and obtained suppression of vortex
shedding and reduction of drag. Darekar & Sherwin (2001) performed numerical
simulations for flow past a square cylinder with a wavy stagnation face at low
Reynolds numbers, and showed that the Kármán vortex shedding is suppressed into
a steady and symmetric structure by the spanwise waviness. All these studies have
successfully shown that a modification of the front- or base-surface shape leads to
a significant drag reduction. However, in these approaches, global changes in the
surface shape may be required for practical situations.

Kim & Choi (2005) and Kim et al. (2004) suggested an active open-loop control
method (called distributed forcing) for reduction of drag on a circular cylinder and
on a two-dimensional bluff body with a blunt trailing edge, respectively, where the
forcing (blowing and suction) varied sinusoidally in the spanwise direction, but was
steady in time. It was shown that the distributed forcing attenuates the Kármán vortex
shedding for both laminar and turbulent flows and thus reduces drag significantly.

As a result of our efforts to further simplify this active forcing into a passive device,
we propose the use of a small tab, mounted on part of the trailing edge of a bluff
body, for effectively attenuating the vortex shedding and reducing drag. We show in
this paper that the tab effectively disturbs the wake such that the two-dimensional
wake structure turns into a three-dimensional one. Therefore, the objectives of the
present study are to suggest this tab as a new passive device for reduction of drag on a
two-dimensional bluff body with a blunt trailing edge and to show its drag-reduction
mechanism using both a wind-tunnel experiment and numerical simulation.

2. Tools
2.1. Experimental set-up

The present experiment was conducted in an open-circuit blowing-type wind tunnel.
The test section was made of acrylic sheeting and it is 3 m × 0.6 m × 0.3 m in the
streamwise, vertical and spanwise directions, respectively. The maximum wind speed at
the test section was 25 m s−1 and the uniformity of the mean velocity and background
turbulence intensity were both within 0.5 % at 10 m s−1.

Figure 1 shows a schematic diagram of the bluff body and tab used in the present
study, and a photograph of it installed in the test section. Here, x, y, z denote
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Figure 1. (a) Schematic diagram of the bluff body and tab; and (b) shown installed
at the test section.

the streamwise, vertical and spanwise directions, and u, v, w are the corresponding
velocity components. The bluff body is made of acrylonitrile butadiene styrene (ABS)
copolymer and its nose is shaped into a half ellipse with a ratio of major to minor
axis of 8, following Tombazis & Bearman (1997). The streamwise length, height (h)
and spanwise length (W ) of the bluff body are 380, 60 and 300 mm, respectively,
resulting in a blockage ratio of 10 %. The aspect ratio (W/h) of our bluff body is 5,
smaller than that of Bearman (1967) (W/h = 28), but the base-pressure coefficient is
in reasonable agreement with that of Bearman (1967) (see § 3.1). A trip wire, which
is a chain of spheres with the diameter of 2 mm, is attached to both the upper and
lower body surfaces at the 100 mm downstream location from the nose of the bluff
body. Three different free-stream velocities of 5, 10 and 20 m s−1 are considered and
the corresponding Reynolds numbers are Re = u∞h/ν = 20 000, 40 000 and 80 000,
respectively, where u∞ is the free-stream velocity and h is the body height.

The tab is a thin small rectangular plastic body attached to part of the trailing edge
of the bluff body using a double-sided tape (see figure 1). The streamwise thickness
of the tab is fixed to be lx = 1 mm. Two kinds of parametric studies are performed to
determine the size of optimal tab maximizing drag reduction. First, one pair of tabs
is mounted on the mid-span of the upper and lower trailing edges and their effect is
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investigated by changing the vertical height (ly) and spanwise width (lz). The values of
ly and lz are varied independently; ly/h= 0.017, 0.033, 0.067, 0.133, 0.2, 0.25, 0.33 and
0.66, and lz/h= 0.017, 0.033, 0.067, 0.1, 0.133, 0.2, 0.25, 0.33 and 0.66. Therefore, a
total of 72 cases of (ly, lz) are tested at each Reynolds number. Secondly, we consider
multiple pairs of tabs, and conduct another parametric study by varying the spanwise
spacing (λ) between the adjacent tabs as well as ly and lz (see figure 1a). The values
of ly , lz and λ are also varied independently; ly/h= 0.033, 0.067, 0.1, 0.133 and 0.25,
lz/h= 0.1, 0.133 and 0.2, and λ/h= 0.416, 0.625, 0.833, 1.25, 1.667 and 2.5. A total
of 85 cases of (ly, lz, λ) are considered at each Reynolds number. Furthermore, we
test one case of staggered multiple tabs having (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667)
that are mounted in a zigzag pattern at the upper and lower trailing edges. Note that,
owing to the relatively small aspect ratio of the present bluff body (W/h= 5), the
result of a single pair of tabs may be similar to that of multiple pairs of tabs with
λ/h= 5.

Eighteen pressure taps are located along the horizontal centreline (y =0) and two
more pressure taps are installed at y = ±0.25h along the vertical centreline (z = 0),
to measure the base pressure distribution. The pressure taps are connected with a
digital manometer (MKS 220D) having the measurement range of 0–1 Torr. At each
measurement point, the pressure is measured for 100 s to obtain a fully converged
mean pressure value. The signals from the manometer are sampled at a rate of
1 kHz and stored in a computer via the A/D converter (DT2838). The boundary-
layer thicknesses (δ) measured at x/h= − 0.033 are 14.3, 13.3 and 12.0 mm for
Re= 20 000, 40 000 and 80 000, respectively, providing δ/h= 0.24, 0.22 and 0.20 which
are very similar to those of Bearman (1965, 1967). The corresponding momentum
thicknesses (θ) are 1.08 (Reθ = 360; h/θ = 55.6), 1.02 (Reθ = 680; h/θ = 58.8) and
0.94 mm (Reθ =1, 250; h/θ = 63.8), respectively.

The streamwise velocity in the wake is measured with an in-house multi-channel
hot-wire anemometer and a z-rake probe consisting of six hot-wire sensors spaced in
the spanwise direction. The spanwise spacings between the adjacent sensors are fixed
such that �z/h= 0.1, 0.1, 0.1, 0.32, 0.31. The sensor used is a platinum-10 % rhodium
wire of 2.5 µm diameter that is soldered to the prongs of the sensor. At the overheat
ratio of 20%, the cutoff frequency of each sensor is approximately 25 kHz. The probe
is positioned in the flow field by a two-dimensional (x and y) traverse controlled by a
computer via stepping motors. The flow domain measured is 0.08 � x/h � 4.08 and
0 � y/h � 2.0.

The signals from the hot-wire anemometer are digitized by the A/D converter. The
digitizing system is capable of simultaneous data acquisition of the six channels using
the function of Simultaneous Sample and Hold (SSH) of the A/D converter. The
voltages from the anemometer are calibrated in the free stream with a standard two-
hole Pitot tube and the digital manometer. A polynomial of fourth order is used to
form a least-squares fit of the anemometer’s voltage versus the velocity. Immediately
after calibration, the rake probe is positioned in the wake and the data are recorded.
After finishing the measurement at each x location, the probe is returned to the free
stream and the calibration is checked. When any sensor of the probe drifted by more
than 1 %, the data were rejected and the calibration process repeated. The output
from the hot-wire anemometer is sampled for 25 s at a rate of 16 kHz.

2.2. Computational details

Large-eddy simulation (LES) with a dynamic subgrid-scale model (Germano et al.
1991; Lilly 1992) is also carried out for flow over the bluff body, but at a much
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Figure 2. Schematic diagram of the computational domain.

lower Reynolds number of Re =4200 than those of the experiment. Figure 2 shows
the schematic diagram of the computational domain. In our LES, only the flow field
over the rear part of the body is simulated with a turbulent boundary-layer flow of
Reθ = 670 (Reδ = 5880) introduced at the domain inlet. To provide a realistic turbulent
boundary-layer inflow, a separate LES of a turbulent flat-plate boundary-layer flow
is performed based on the method by Lund, Wu & Squires (1998). The skin-friction
coefficient, mean streamwise velocity and turbulence intensities obtained from this
simulation showed a good agreement with the existing data at the corresponding
Reynolds number (not shown in this paper). A similar approach was also taken
by Yao et al. (2001) in their direct numerical simulation of flow over a rectangular
trailing edge at Re = 1000. Note that, unlike the experiment (δ/h ≈ 0.2), the ratio of
the boundary-layer thickness at the domain inlet to the body height is quite large
(δ/h= 1.4 and h/θ = 6.27) in the present LES configuration. A much smaller value
of δ/h than the present one requires a higher Re at which the computational effort
of resolving smaller-scale turbulence in the wake becomes increasingly significant.
However, as we show in this paper, the tab increases the base pressure for both large
and small values of δ/h, indicating that it is a robust passive device for drag reduction
at a wide range of Reynolds numbers.

The time-integration method for solving the filtered incompressible Navier–Stokes
equations along with the continuity is similar to the semi-implicit fractional step
method used in the LES of flow over a backward-facing step by Akselvoll & Moin
(1996). Here, the convection terms in the streamwise and spanwise directions are
treated using a third-order-accurate Runge–Kutta method, while the convection term
in the vertical direction and all the viscous terms are treated using the Crank–
Nicolson method. The Poisson equation for pseudo-pressure is solved using a multigrid
method after Fourier transformation in the spanwise direction. On the other hand, an
immersed boundary method by Kim, Kim & Choi (2001) is used to satisfy the no-slip
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condition at the surface of the tab. Note that the immersed boundary method is used
only for the tab, not for the entire bluff body. The applicability and accuracy of the
immersed boundary method to flows in complex geometries have been validated in
Kim & Choi (2002, 2003); Yun et al. (2003, 2006) and Ahn, Choi & Lee (2005).

The size of the computational domain is −3 <x/h < 15, −28 < y/h < 28 and
−2 <z/h < 2, and the numbers of grid points are 340 × 240 × 64 in the streamwise,
vertical and spanwise directions, respectively. The numbers of grid points located
inside a tab are 5 × 18 × 4 in the streamwise, vertical and spanwise directions,
respectively. Uniform grids are used in the spanwise direction, while grids are clustered
near the surface of the bluff body in the streamwise and vertical directions. The no-slip
boundary condition is imposed at the body surface, whereas the boundary condition
of u = u∞ and ∂v/∂y = ∂w/∂y =0 is used at the far-field boundary. The convective
outflow boundary condition is used at the domain outlet and the periodic boundary
condition is imposed in the spanwise direction. We performed an additional simulation
to guarantee the grid independence of the solution. Computations with more grid
points of 450 × 288 × 64 and further grid clustering near the body surface and shear
layer resulted in the base-pressure change of only about 2 %.

As in the experiment, tabs are attached on the upper and lower trailing edges
of the body. Since the main objectives of the present LES are to confirm the
results from our experiment and to investigate the mechanism of drag reduction
by the tab, only three tab configurations are considered in our LES. One is
the non-staggered multiple tabs of (lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 4.0), and
the other two correspond to the non-staggered and staggered multiple tabs of
(lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 2.0). See figure 1(a) for the definitions of
staggered and non-staggered configurations of tabs.

In the present study, we obtain the subgrid-scale eddy viscosity at each grid
point using the averaging procedure suggested by Lilly (1992). Here, averaging
is conducted along the spanwise direction. We may wonder whether the dynamic
procedure (Germano et al. 1991; Lilly 1992) of obtaining the subgrid-scale eddy
viscosity is valid for the present geometry where there is no homogeneous direction
for averaging. Therefore, we take local averaging still based on Lilly’s procedure
for the case of (lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 2.0); eight grid points in an
(y, z)-plane have the same turbulence statistics for this geometry, and thus averaging
is conducted over those grid points. The result from this computation showed a
negligible change (by less than 1 %) in the base-pressure coefficient as compared
to that presented in this paper. The insensitivity of the LES result to the detailed
averaging procedure may be attributed to the ‘self-adjusting mechanism’ of dynamic
model described in Park, Yoo & Choi (2005).

To illustrate the drag-reduction mechanism by the tab more clearly, we also
performed numerical simulation of laminar flow and presented the results in the
Appendix.

3. Experimental results and discussion
3.1. Parametric study for one pair of tabs

Figure 3 shows the spanwise distributions of the base-pressure coefficient for the
uncontrolled flow and the flow controlled by one pair of tabs of (ly/h, lz/h) = (0.2,
0.2) at Re = 40 000, together with that for the uncontrolled flow by Bearman (1967).
Included also in figure 3 is the base-pressure coefficient for the flow modified by a two-
dimensional fence of ly = 0.2h at the same Reynolds number. As mentioned in § 2.1, we



Drag reduction in flow over a two-dimensional bluff body 395

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

–2 –1 0 1 2

Cpb

z/h

Figure 3. Spanwise distributions of the base-pressure coefficient: �, uncontrolled flow
(present, Re= 40 000); �, uncontrolled flow (Bearman 1967, Re= 41 000); �, one pair of
tabs of (ly/h, lz/h) = (0.2, 0.2) (present, Re= 40 000); �, two-dimensional fence of ly/h = 0.2
(present, Re= 40 000).

measured the base pressures at 18 spanwise locations along the horizontal centreline
and also at (y = ±0.25h, z =0). We found that the variation of the base pressure along
the vertical direction at z = 0 is negligible (by less than 0.5 %) for all configurations
of tabs. The base-pressure coefficients in the present experiment are obtained after
considering the blockage effect of our wind tunnel; because of the blockage, the free-
stream velocity at the trailing edge is larger than that ahead of the bluff body, and thus
we use this modified free-stream velocity to obtain the base-pressure coefficients. The
base pressure for the uncontrolled flow (Cpbo

) is almost uniformly distributed along
the spanwise direction, indicating that the wake behind the bluff body is maintained
to be homogeneous in that direction. The base pressure averaged over the spanwise
direction (C̄pbo

) is about 5 % larger than that of Bearman (1967), which is reasonable
considering that our ratio of span to base height is W/h= 5, whereas Bearman’s is
W/h= 28. With the tab, the base pressure is significantly increased by 23 %. The
base pressure is increased over all the spanwise locations, and the increase is larger at
the spanwise location of tab (−0.1 � z/h � 0.1) than elsewhere. We will discuss this
point in detail later in this paper. Unlike the tab, the two-dimensional fence (i.e. very
large lz) with the same height drastically decreases the base pressure, as expected.

Figure 4 shows the variation of the averaged base pressure expressed as a
percentage, �C̄pb = −(C̄pb − C̄pbo

)/C̄pbo
× 100, with respect to the height (ly) and

width (lz) of the tab at Re =20 000, 40 000 and 80 000, where C̄pb and C̄pbo
are the

base-pressure coefficients averaged over the spanwise direction in the cases with and
without tab, respectively. For all three Reynolds numbers, most tabs increase the base
pressure except those of very small ly (<0.033h) or lz (<0.033h). Among them, the tabs
of ly/h= 0.2 ∼ 0.33 and lz/h= 0.14 ∼ 0.33 increase the base pressure by more than
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23 %. Even larger tabs (ly/h > 0.33 and lz/h > 0.33) increase the base pressure quite
significantly. However, they are not desirable in reducing the drag of the bluff body
because the drag on the tab itself is not negligible. Note also that a very large tab
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such as the two-dimensional fence significantly decreases the base pressure (figure 3).
In the case of an optimal tab (e.g. ly = lz =0.2h) that produces maximum increase in
the base pressure, its area (2ly lz =0.08h2) is much smaller than the base area of the
bluff body (5h2). Therefore, the increase in drag of the tab at the optimum size or less
is very small as compared to the decrease in drag of the bluff body. We can confirm
this conclusion from a simple analysis. Let us assume that the pressure coefficients
on the front and rear surfaces of the tab are 1 and C̄pb, respectively. Then, the drag
coefficient of tab (CDt

) normalized by the base-surface area of the main bluff body is

CDt
=

(
pft

− pbt

)
At

1
2
ρu2

∞Am

=
(
Cpft − Cpbt

) At

Am

≈ (1 − C̄pb)
At

Am

, (1)

where Cpft − Cpbt
= (pft

− pbt
)/(ρu2

∞/2), At = lylz, Am =Wh, pft
and pbt

are the
pressures on the front and rear surfaces of the tab, respectively. For the configuration
of (ly/h, lz/h) = (0.2, 0.2), C̄pb = −0.42 and thus CDt

≈ 0.011. This value of CDt
agrees

very well with that obtained from LES in the present paper (see § 4.1), confirming the
validity of the assumption used in evaluating the drag on the tab. On the other hand,
the drag coefficient on the main bluff body (CDm

) can be reasonably approximated as
CDm

≈ −C̄pb
, which is confirmed in the present study by measuring the pressure along

the entire surface of the main body and also in previous studies (e.g. Tombazis &
Bearman 1997). Then the drag increase due to the tab itself is about 2 % for
the configuration of (ly/h, lz/h) = (0.2, 0.2). This is negligible compared to the drag
reduction obtained by the tab. Therefore, the base pressure increase shown in figure 4
may be interpreted as that of drag reduction for the present bluff body used (however,
this argument is not valid for other types of bluff body).

Figure 4 also shows that the base pressure rapidly changes with respect to the
size of tab (i.e. �C̄pb vs. ly/h or �C̄pb vs. lz/h), when ly/h or lz/h is smaller than
the optimum size. When ly/h or lz/h is sufficiently small, the tab reduces the base
pressure slightly, suggesting that a tab of this size does not significantly modify the
wake, but provides more turbulent fluctuations to the flow.

Although the zero crossing line (�C̄pb = 0) moves to smaller ly and lz with increasing
Reynolds number, very similar results are obtained for all three Reynolds numbers
(figure 4). This may indicate that the optimum size of tab scales with the height of the
bluff body at least for thin separating shear layers (see also § 4.2), which also makes
sense because the large-scale dynamics in the wake is closely associated with the body
height. The detailed mechanism of base-pressure recovery by the tab is discussed in
§ 4.2.

3.2. Parametric study for multiple tabs

Figure 5 shows the variation of the averaged base pressure in percentage, �C̄pb, at
Re = 40 000 with respect to the height (ly) and spanwise spacing (λ) of non-staggered
multiple tabs for values of lz of 0.1h, 0.133h and 0.2h. Most multiple tabs increase the
base pressure when λ/h � 0.833; the maximum increase in the base pressure is about
33 % for the optimal configuration of the tab. For the three values of lz considered,
the optimum λ is the same and it is 1.667h, whereas the optimum ly becomes smaller
with increasing lz. Among all the configurations tested here, the configuration of
(ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667) is chosen as the best one because the smaller
height of the tab is preferable for practical considerations. The multiple tabs with
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small spanwise spacing (λ/h= 0.416 and 0.625) decrease the base pressure for all
three values of lz, because in these cases the tab configuration becomes almost a
two-dimensional fence. At other Reynolds numbers of Re = 20 000 and 80 000, we
obtained very similar results to those shown in figure 5, again indicating that the
optimum size scales with the body height for thin separating shear layers.

It should be pointed out here that the optimal λ/h of having local maximum C̄pb

at given tab size increases with increasing tab size: for example, given ly/h= 0.1
and lz/h= 0.133, the optimal λ is 1.667h, whereas it is around 2.5h for ly/h= 0.25
and lz/h= 0.133 (see figure 5b). This observation explains why the previous studies
(Tombazis & Bearman 1997; Bearman & Owen 1998) investigating the effect of geo-
metric modification reported that the optimal length scale of geometric modification
is around 3−5h which is larger than that (1.667h) obtained in the present study. That
is, Tombazis & Bearman (1997) considered a geometric modification of trailing edge
in the form of periodic waves across the spanwise direction. They introduced two
parameters for the geometric modification: one is the base wavelength (denoted as L

in that paper; this is similar to λ in the present study), and the other is the base peak-
to-peak wave height in the streamwise direction (denoted as w in that paper; it does
not have direct correspondence with the present device, but is more or less associated
with ly and lz of the present device). The optimal size of increasing the base pressure
that they obtained is L = 3.5h for w = 0.5h and is larger than the present one (because
of larger w), which is consistent with the present finding about the relation between
the optimal spanwise spacing and the device size (i.e. λoptimal increases with increasing ly
and lz). Darekar & Sherwin (2001) considered a similar geometry modification to that
of Tombazis & Bearman (1997) for flow past a square cylinder with a wavy stagnation
face at Re= 100 and showed that the optimal size of minimum drag is L =5.6h and
w = 0.168h. This optimal value of L is larger than the present one at the corresponding
size of w. This difference can be attributed to the different separating boundary-layer
characteristics, i.e. the present study and Tombazis & Bearman (1997) considered
thin separating boundary layers, whereas the separating boundary layer in Darekar
& Sherwin (2001) was thick. See § 4.2 for a detailed discussion about the relation
between the effective tab size and the separating boundary-layer characteristics.

Figure 6 shows the spanwise distributions of the base-pressure coefficient at
Re = 40 000 for the flows with non-staggered and staggered multiple tabs of
(ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667), together with those without tab and with one
pair of tabs of (ly/h, lz/h) = (0.2, 0.2). The values of ly/h, lz/h and λ/h correspond
to the optimal configuration of non-staggered multiple tabs maximizing the base-
pressure increase (see figure 5). With the non-staggered multiple tabs, the base
pressure is increased over all the spanwise locations and the increase is about 33 %
which is larger than that from one pair of tabs (23 %). Therefore, the optimally
configured multiple tabs are more effective for reducing drag than one pair of tabs
having optimum size. On the other hand, the staggered multiple tabs with the same
ly/h, lz/h and λ/h are less effective for drag reduction than the non-staggered multiple
ones. In addition, the base pressure for the staggered tabs is uniformly distributed
along the spanwise direction, whereas it is increased more at the spanwise location of
tab for the non-staggered ones. We will discuss these points later in this paper.

3.3. Streamwise velocity measurement

Figure 7 shows the contours of the mean streamwise velocity on the crossflow plane
at four different streamwise positions for the optimal non-staggered multiple tabs
at Re =40 000. Note that the hatched rectangle in this figure represents the tab and
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Figure 6. Spanwise distributions of the base-pressure coefficient at Re= 40 000 for multiple
tabs: �, uncontrolled flow; �, one pair of tabs of (ly/h, lz/h) = (0.2, 0.2); �, non-staggered
multiple tabs of (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667); �, staggered multiple tabs of (ly/h, lz/h,
λ/h) = (0.067, 0.2, 1.667). Note that the centre positions of tabs for the cases of � and � are
zc/h =0 and ±0.83, respectively.

the horizontal line of y/h= 0.5 corresponds to the trailing edge of the body. The
intersecting points of vertical and horizontal dashed lines denote the positions where
the velocity is measured. Figure 7 shows that the tab significantly distorts the mean
streamwise velocity in the spanwise direction. That is, the flow is decelerated near the
tab ((z − zc)/h < 0.4), but is accelerated at the far side of the tab ((z − zc)/h � 0.4),
where zc is the centre position of this tab (zc/h= 0.83). Thus, the wake width becomes
smaller at the far side of the tab, while it becomes larger near the tab. Because of the
different wake widths along the spanwise direction, the vortices shed from the upper
and lower trailing edges lose original two-dimensional characteristics and the vortex
dislocation occurs (see below).

On the other hand, it is known (Bearman 1965, 1967; Petrusma & Gai 1994;
Tombazis & Bearman 1997) that the vortex formation length and wake width are
directly related to the base pressure behind a two-dimensional body. The definition
of the vortex formation length and wake width are given in figure 8 (Tombazis &
Bearman 1997). Using the r.m.s. streamwise velocity fluctuations measured in the
present study, we obtain the distributions of the vortex formation length and wake
width in the spanwise direction. Figures 9(a) and 9(b) show the spanwise variations
of the vortex formation length (Lf ) and wake width (Wf ), respectively, at Re =40 000
for the flows with one pair of optimal tabs of (ly/h, lz/h) = (0.2, 0.2) and with the
non-staggered optimal tabs of (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667). Also shown in
figure 9 are those for the uncontrolled flow. The vortex formation length for the
uncontrolled flow is 1.03h, agreeing well with that of Bearman (1965). Owing to
the tab, Lf is significantly increased over all the spanwise locations (in other words,
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Figure 7. Contours of the mean streamwise velocity on the crossflow plane for the
non-staggered multiple tabs of (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667): (a) x/h = 0.08; (b) 0.5;
(c) 1.0; (d) 1.5. The hatched rectangle in this figure represents the tab. Note that the centre
position of this tab is zc/h = 0.83.

the radius of curvature of the separating shear layer is increased), and the pressure
in the vortex formation region is increased because the rate of entrainment to this
region is greatly decreased. The vortex formation length is larger near the tab than
at other spanwise locations, indicating that the base pressure is increased more at the
spanwise tab location than at other spanwise locations (see figure 6). As expected
from figure 6, Lf for the non-staggered optimal multiple tabs is larger than that for
one pair of optimal tabs.

In the presence of tabs, the wake width increases at the spanwise locations on and
near the tab. A large increase in Wf is found for the case of a single optimum pair
than for the case of multiple optimum pairs. This is because the height (ly) of the
first is greater than that of the latter. On the other hand, the wake width becomes
smaller at the far side of tab than that of uncontrolled flow. Much smaller Wf is
obtained for the multiple optimum pairs than for the single optimum pair, indicating
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Figure 8. Schematic diagram of vortex formation length and wake width behind a body.
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Figure 9. Spanwise distributions of the vortex formation length (Lf ) and wake width
(Wf ) at Re =40 000: (a) Lf ; (b) Wf . �, Uncontrolled flow; �, one pair of tabs of
(ly/h, lz/h) = (0.2, 0.2); �, non-staggered multiple tabs of (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667).
Here, zc = 0 and 0.83h for � and �, respectively.

that the multiple optimum pairs more significantly break down the two-dimensional
characteristics of original vortex shedding.

Figure 10 shows the energy spectra of the streamwise velocity measured at y/h = 0.5
along the centre of the tab ((z − zc)/h= 0, figure 10a) and along the centre between
the adjacent tabs ((z − zc)/h= 0.83, figure 10b) for the cases without and with the
non-staggered optimal multiple tabs of (ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667). For the
uncontrolled flow, the distinct energy peak indicating the vortex-shedding frequency,
occurs at f h/u∞ = 0.25, which is in good agreement with Bearman (1965, 1967). In
the presence of tabs, the energy peak disappears at x/h = 0.5 and 1.0 behind the
tab (i.e. at (z − zc)/h= 0), but appears at x/h = 2.0 with a smaller amplitude and a
slightly larger frequency of 0.27 u∞/h (figure 10a). On the other hand, at the spanwise
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Figure 10. Energy spectra of the streamwise velocity measured at y/h = 0.5 (Re= 40 000):
(a) (z − zc)/h = 0; (b) 0.83. , uncontrolled flow; , non-staggered multiple tabs of
(ly/h, lz/h, λ/h) = (0.067, 0.2, 1.667). Here, zc = 0.83h.

location away from the tab (i.e. at (z − zc)/h= 0.83), the energy peak disappears at
x/h= 0.5, but reappears at x/h= 1.0. However, its frequency is a little larger and its
amplitude is still much smaller than those for the uncontrolled flow (figure 10b).
This observation suggests that, owing to the tab, the original two-dimensional



404 H. Park and others

Cpb

z/h

–2 –1 0 21

–0.25

–0.20

Figure 11. Spanwise distributions of the base-pressure coefficient at y = 0 (Re= 4200):
, uncontrolled flow; , non-staggered multiple tabs of λ/h =4.0 (zc/h = 0); ,

non-staggered multiple tabs of λ/h =2.0 (zc/h = ± 1); , staggered multiple tabs of
λ/h =2.0 (zc/h = ± 1 and 0, respectively, at the upper and lower trailing edges). Here, zc is
the centre position of the tab. The tabs have dimensions of (lx/h, ly/h, lz/h) = (0.05, 0.2, 0.2).

vortex shedding completely disappears right behind the bluff body, but a mild
three-dimensional vortex shedding reappears at farther downstream locations. This
process is closely associated with the vortex dislocation, which will be discussed in
§ 4. Note that the peak frequency at x =2h is nearly the same along the spanwise
direction for the present optimal tab configuration (λ= 1.667h), but it varies along
the spanwise direction in Tombazis & Bearman (1997) for their optimal device
configuration (L = 3.5h and w = 0.5h). This difference seems to be due to the different
sizes of passive control devices considered: according to Kim & Choi (2005), the peak
frequency does not change along the spanwise direction at small spanwise spacing of
control devices, but changes at large spanwise spacing of control devices.

4. Computational results and discussion
As mentioned before, we conduct large-eddy simulations at a much lower Reynolds

number of Re = 4200 for the non-staggered multiple tabs of (lx/h, ly/h, lz/h, λ/h) =
(0.05, 0.2, 0.2, 2.0) and (0.05, 0.2, 0.2, 4.0), and for the staggered multiple ones of
(lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 2.0). With the first non-staggered configuration,
the base pressure was increased by 24 % in experiments at Re =40 000 (figure 5c).
From numerical simulations, we observe the flow characteristics for each tab con-
figuration and investigate the mechanism responsible for the base-pressure increase
by the tab.

4.1. Base pressure and flow field

Figure 11 shows the spanwise distributions of the base-pressure coefficient for the
uncontrolled flow and the flow with three configurations of tabs. The base-pressure
coefficient averaged over the spanwise direction for the uncontrolled flow is C̄pbo

=

−0.244, which is much higher than that from the experiment (C̄pbo
= −0.55). The
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variation of the base pressure along the vertical direction is less than 1.5 %.
Petrusma & Gai (1994) presented the base-pressure coefficient for an uncontrolled
blunt trailing edge as a function of h/θ , based on previous and their own experimental
data. Since most of the experimental data available had large h/θ (>20), they
extrapolated these data to obtain Cpb for small h/θ . Although it is almost constant
for sufficiently large h/θ (Cpb ≈ −0.6 for h/θ > 40), the base-pressure coefficient rapidly
increases as h/θ decreases. The base-pressure coefficient from our LES (C̄pbo

= −0.244
at h/θ = 6.27) shows good agreement with their data. Furthermore, the base-pressure
coefficient in direct numerical simulation by Yao et al. (2001) is also very high
(Cpb ≈ −0.14) at h/θ = 1.5. Therefore, we believe that the high base pressure obtained
from the present LES is the result of the small h/θ considered.

As shown in figure 11, the non-staggered multiple tabs of (lx/h, ly/h, lz/h, λ/h) =
(0.05, 0.2, 0.2, 2.0) and (0.05, 0.2, 0.2, 4.0) increase the base pressure by about
18 % and 14 %, respectively, whereas the staggered one of (lx/h, ly/h, lz/h, λ/h) =
(0.05, 0.2, 0.2, 2.0) increases the base pressure by 10 %. Here, the percentages of the
base-pressure increase are obtained by integrating the pressure over the entire base sur-
face. These results are similar to those obtained from the present experiment, although
the amounts of base-pressure recovery are smaller than those from the experiment
owing to the difference in h/θ . Note also that the non-staggered configuration is more
effective for reducing drag than the staggered one. In the cases of a non-staggered
configuration, the increase in Cpb is larger near the spanwise location of the tab than
at other spanwise locations, which is similar to what was observed from the experi-
ment (figure 6). In the case of a staggered configuration, Cpb is uniformly distributed
along the spanwise direction as in the experiment (figure 6). Therefore, the present
LES supports the results from the experiment, even at the low Reynolds number.

In our LES, we calculate the total drag (Dt ) exerted on the non-staggered tabs
of (lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 4.0) by integrating the momentum forcing,
applied inside the tab, from the immersed boundary method. The total drag coefficient,
CDt

= Dt/(ρu2
∞Am/2), is about 0.01, where Am = 4h2. Note that the area Am is taken

to be the base area of the main bluff body for its direct comparison with the drag
coefficient of the main body, CDm

. The calculated value of CDt
(=0.01) is much smaller

than that of the main bluff body. We also confirmed that Cp on the front surface of the
tab is about 1, whereas Cp on its rear surface is similar to the base-pressure coefficient
of the main bluff body, confirming the validity of simple analysis made in § 3.1.

Figure 12 shows the instantaneous vortical structures for the uncontrolled flow
and the flows with three configurations of tabs. Here, the iso-λ2 surfaces are obtained
from the vortex-identification method by Jeong & Hussain (1995). The typical Kármán
vortex shedding is clearly observed in the uncontrolled flow (figure 12a). With the non-
staggered tabs (figures 12b and 12c), the vortex shedding is substantially suppressed
and the Kármán vortex cores are torn into three-dimensional smaller-scale vortices.
Furthermore, strong vortical motions right behind the bluff body disappear with
the tab. With these flow changes, the base pressure substantially increases. With the
staggered tabs (figure 12d), the vortex-shedding process is delayed in the downstream
and the Kármán vortex rollers are weakly alive, resulting in relatively smaller increase
in the base pressure, as shown in figure 11. This flow modification by the tab is very
similar to that by the distributed forcing applied to flow over a circular cylinder
(Kim & Choi 2005) and flow over a two-dimensional bluff body with a blunt trailing
edge (Kim et al. 2004).

The spanwise distributions of vortex formation length (Lf ) and wake width (Wf )
are obtained from LES and shown in figure 13. The variations of Lf and Wf owing
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Figure 12. Instantaneous vortical structures in the wake (Re=4200): (a) uncontrolled flow;
(b) non-staggered multiple tabs of λ/h =4.0; (c) non-staggered multiple tabs of λ/h = 2.0;
(d) staggered multiple tabs of λ/h = 2.0. Shown in this figure are the three-dimensional views of
iso-λ2 surfaces (left-hand column) and top views of iso-pressure surfaces (right-hand column).
The tabs have dimensions of (lx/h, ly/h, lz/h)= (0.05, 0.2, 0.2).

to the tabs are very similar to those from the present experiment (figure 9). That is,
the formation length is significantly increased over all the spanwise locations by the
tab and it is larger near the tab than at other spanwise positions. Furthermore, it is
increased more for the non-staggered configuration than for the staggered one. The
wake width is increased near the tab-mounted spanwise locations, but it is smaller
at the far side of tab than that of uncontrolled flow. Lf and Wf for the staggered
configuration are also increased, but they are more uniformly distributed along the
spanwise direction than those for the non-staggered one, which is consistent with the
uniform distribution of base pressure for the staggered configuration.

4.2. Mechanism of drag reduction

Figure 14 shows the mean crossflow vectors (v̄, w̄), together with the contours of
mean streamwise velocity (ū) on the crossflow plane at x/h = 0.5, obtained from LES
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Figure 13. Spanwise distributions of the vortex formation length (Lf ) and wake width (Wf )
at Re =4200: (a) Lf ; (b) Wf . , Uncontrolled flow; , non-staggered multiple tabs
of λ/h= 4.0 (zc/h = 0); , non-staggered multiple tabs of λ/h= 2.0 (zc/h = ±1); ,
staggered multiple tabs of λ/h= 2.0 (zc/h = ± 1 and 0, respectively, at the upper and lower
trailing edges). Here, zc is the centre position of the tab. The tabs have dimensions of
(lx/h, ly/h, lz/h) = (0.05, 0.2, 0.2).
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Figure 14. Mean crossflow vectors (v̄, w̄) and contours of the mean streamwise velocity on
the crossflow plane at x/h= 0.5 (Re= 4200). The white rectangles denote the spanwise location
of the tabs, (lx/h, ly/h, lz/h, λ/h)= (0.05, 0.2, 0.2, 4.0).

for the non-staggered multiple tabs of (lx/h, ly/h, lz/h, λ/h) = (0.05, 0.2, 0.2, 4.0). As
shown, the tab significantly distorts the mean streamwise velocity in the spanwise
direction. Owing to the tab, the flows from upper and lower sides separate further
from each other and the wake width becomes larger (figure 13b). On the other
hand, owing to the streamwise vortices generated at the side of the tab, the flow is
significantly accelerated there (i.e. at 0.4 � z/h � 1.2) and the wake width becomes
smaller (figure 13b). The difference in the wake width along the spanwise direction
necessarily introduces the spanwise phase mismatch in the vortex-shedding process.
As a result, the vortical structure becomes three-dimensional (figure 12) and loses
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Figure 15. Time sequence of vortical structures behind the bluff body with the non-staggered
multiple tabs of (lx/h, ly/h, lz/h, λ/h)= (0.05, 0.2, 0.2, 4.0) (Re= 4200): (a) tu∞/h = 0.2;
(b) 3.4; (c) 6.6; (d) 9.8; (e) 23.5. Shown in this figure are the top view of the iso-pressure
surfaces (left-hand column) and contours of the spanwise vorticity on the (x, y)-planes at
z/h = 0 (middle column) and z/h = 0.53 (right-hand column). The time interval of tu∞/h = 3.2
corresponds to about half the vortex shedding period of the uncontrolled flow.

its strength. Then, the larger wake width at the tab location retards the interaction
between the vortices shed from the upper and lower trailing edges and thus leads to
a greater base-pressure recovery there (see figure 11 and also below). Similar features
were found in flow over a square cylinder with a wavy stagnation face (Darekar &
Sherwin 2001).

In figure 14, the significant acceleration of the mean streamwise velocity occurred
at 0.4 � z/h � 1.2. Thus, we now analyse the flow changes at one of these spanwise
locations and also at z/h = 0 (centre location of the tab). Figure 15 shows the
time sequence of vortical structures behind the bluff body after the tab is suddenly
installed at t = 0 to an instantaneous uncontrolled flow. Until tu∞/h= 0.2 (figure 15a),
the initial base flow (i.e. flow without the tab) is not much affected by the tab, and
the vortex shedding at z/h = 0 is in the same phase as that at z/h = 0.53. In other
words, the vortex shedding is nominally two-dimensional at this time. However, at
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tu∞/h= 3.4 (figure 15b), the wake structures near the base surface at z/h = 0 are
completely modified because of the tab. The interaction between vortices shed from
the upper and lower trailing edges is significantly weakened owing to the larger
wake width. On the other hand, the vortex shedding at z/h = 0.53 is still not much
affected at this time. At tu∞/h= 9.8 (figure 15d), the vortex shedding alternately
occurring from the upper and lower trailing edges nearly disappears behind the tab
(at z/h = 0) and vortical structures become completely three dimensional (see the
left-hand column of figure 15d). The vortex dislocation occurring at the spanwise
location of z/h = 0 is manifest from figures 15(b), 15(c) and 15(d), which results in
weakening of vortical strength and increase in the base pressure. The drag reduction
(or the base-pressure increase) by the generation of vortex dislocation in the wake has
been found from other drag-reducing devices (Tombazis & Bearman 1997; Darekar &
Sherwin 2001; Kim & Choi 2005). With a further lapse in time (figure 15e), the shear
layers at the upper and lower trailing edges roll up much farther downstream and
the alternating nature of vortex shedding is substantially attenuated. Therefore, the
vortex-formation length increases and drag is reduced.

To further illustrate the drag-reduction mechanism by the tab, we simulated laminar
flows without and with tabs at Re =320, and presented the results in the Appendix.
As is clear from the Appendix, the wake modification by the tab in laminar flow is
essentially the same as that in turbulent flow.

It is shown in this study that the main cause of drag reduction by the present
passive device is the mean-velocity modification along the spanwise direction, i.e.
deceleration and acceleration of the mean streamwise velocity near and away from
the tab, respectively. This mean-velocity distribution along the spanwise direction
causes the spanwise mismatch in the vortex-shedding process and eventually results
in vortex dislocation in the wake. Kim (2005) conducted a linear stability analysis on
flow over a circular cylinder, in which he provided spanwise variations of the mean
velocity in the wake and investigated how the absolute instability in the wake changes
owing to this mean-velocity modification. As a result, at proper spanwise wavelengths
of mean-velocity modification (corresponding to the spanwise spacing of the present
device), the absolutely unstable flow changed to stable flow. This result confirms our
drag-reduction mechanism claimed in this paper.

Now, an important question is what size of tab effectively changes the mean velocity
distribution along the spanwise direction in the wake. According to Petrusma &
Gai (1994), the base-pressure coefficient is almost constant (Cpb ≈ −0.6) when the
separating shear layer is very thin (i.e. h/θ > 40), indicating that the reference length
scale associated with the dynamics of wake is the body height, h. On the other hand,
the base-pressure coefficient rapidly increases as h/θ decreases, which means that both
h and θ are the important parameters in determining the wake characteristics for
thick separating shear layers. In this respect, the size of tab, which effectively modifies
the flow in the wake and thus increases the base pressure, should be a function of h

in the case of thin separating shear layers and a function of both h and θ in the case
of thick separating shear layers.

It is found from the present study that the optimal tab size of increasing the base
pressure is around 0.1h (0.2h for single pair of tabs) for Re = 20 000 ∼ 80 000 (thin
separating shear layers; h/θ = 55 ∼ 65), but is 0.5 ∼ 1h for Re = 320 (thick separating
shear layers; h/θ = 6.67 and 14.3). These different optimal tab sizes are mainly
attributed to the difference in the separating boundary-layer characteristics. When
these optimal tab sizes are normalized by δ, they become comparable to the separating
boundary-layer thickness, ly (or lz) ∼ O(δ), for both thick and thin separating shear
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layers. This tab size certainly modifies the separating shear layer along the spanwise
direction and affects the wake region significantly. The importance of modifying
the separating shear layer for bluff-body control was also mentioned in Darekar &
Sherwin (2001). However, as we have already shown in this paper, the essential
mechanism of base-pressure increase is the mean flow modification along the spanwise
direction in the wake because the staggered and non-staggered tab configurations give
very different results even though the tab sizes are the same. In other words, modifying
the shear layer by the tab may be a necessary condition for successful controls, but
should not be a sufficient condition. This is why the tab size should scale with the
body height in case of thin separating shear layers. In most experimental conditions
or practical situations, the value of h/θ is high and thus the effective size of a control
device such as the present tab should scale with the body height.

5. Conclusions
In the present study, we presented a new passive device for reduction of drag on

a two-dimensional bluff body with a blunt trailing edge. The device consists of small
tabs attached to part of the trailing edge of the bluff body and is designed to perturb
the essentially two-dimensional nature of vortex shedding in the wake. Both the wind-
tunnel experiment and numerical simulation showed that drag is indeed decreased (or
the base pressure is increased) by attaching this simple device at the trailing edge.

It was found that the optimum size of the non-staggered multiple tabs at
Re= 20 000, 40 000 and 80 000 is around 0.067h and 0.2h, respectively, in the height
and spanwise length, and the spanwise spacing between the adjacent tabs is 1.667h.
This optimal configuration of tabs produced an increase of about 33 % in the base
pressure. From the experiment and simulation, we showed that the optimal tab size
should scale with the body height for thin separating shear layers (i.e. high h/θ),
but it scales with both the body height and momentum thickness of the separating
boundary layer for thick separating shear layers.

The vortex formation length behind the two-dimensional bluff body was
significantly increased over all the spanwise locations owing to the tab. The wake
width became larger near the tab, but was smaller at the far side of the tab. Owing
to the variation of the wake width in the spanwise direction, the vortices shed from
the upper and lower trailing edges lost their two-dimensional nature and the vortex
dislocation occurred. The Kármán vortex shedding completely disappeared right
behind the bluff body, but occurred at locations farther downstream. As a result,
the base pressure was increased. The same flow modifications as those from the
experiment were captured by simulations of laminar and turbulent flows, even though
the Reynolds numbers considered were orders of magnitude different.

From the present experiment and simulation, we have shown that the tab is an
effective tool for reducing drag on a two-dimensional bluff body with a blunt trailing
edge, where the separation point is fixed. Since the main mechanism of drag reduction
by the tab is to introduce the spanwise phase mismatch in the vortex-shedding process
and thus to break the nominally two-dimensional nature of Kármán vortex shedding,
this passive device should work for the other class of two-dimensional bluff body
(such as a circular cylinder) with the separation point moving in time. In a separate
study, we found that the present tab indeed reduces drag on a circular cylinder and
attenuates the Kármán vortex shedding in the wake (Yoon 2005). Therefore, it seems
that the tab reduces drag on all kinds of two-dimensional bluff bodies when its size
is properly chosen. However, for three-dimensional bluff bodies such as a sphere or
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Figure 16. Spanwise distributions of the base-pressure coefficient at y = 0 (Re= 320) for
non-staggered multiple tabs (lx/h = 0.05, lz/h = 0.2 and λ/h = 4.0): (a) δ/h = 0.6: ,
uncontrolled flow; , ly/h = 0.2; , 0.5; , 0.6; , 0.8; (b) δ/h = 1.2: ,
uncontrolled flow; , ly/h =0.2; , 0.5; , 0.7; , 0.8; × , 1.0.

some transportation vehicles, the vortical structures are essentially three-dimensional
(Johnson & Patel 1999; Kim & Choi 2002; Yun et al. 2003, 2006) and thus the present
device may not produce any drag reduction. Our preliminary study of flow over a
sphere with a tab has not yet resulted in any drag reduction. Some other types of
passive device should be developed for reduction of drag on a three-dimensional body.

The financial support from the Creative Research Initiatives Program through the
Korean Ministry of Science and Technology is gratefully acknowledged.

Appendix. Results from laminar flow simulation
In this Appendix, we simulate laminar flows past a two-dimensional bluff body

with and without tabs to further illustrate the drag-reduction mechanism presented
in § 4.2. The size of the computational domain is −3 <x/h < 30, −21 <y/h < 21 and
−2 < z/h < 2, and the numbers of grid points are 380 × 176 × 64 in the streamwise,
vertical and spanwise directions, respectively. Note that a certain amount of upstream
domain size (3h in this study) is required because the inlet condition should not be
affected by the presence of the tab. The Reynolds number based on the body height
is 320. The ratios of boundary-layer thicknesses at the domain inlet (x/h = −3) to the
body height are δ/h= 0.43 and 1.17, respectively. With these incoming boundary-layer
thicknesses, the boundary-layer thicknesses at the trailing edge are δ/h= 0.6 and 1.2,
respectively. At this Reynolds number and incoming boundary-layer thicknesses, the
base flows (i.e. without tab) maintain two-dimensional vortex shedding in the wake.
Note that even if a uniform flow is specified at the inlet, the boundary layer rapidly
develops above the wall and has a thickness of 0.3h at the trailing edge, but its
profile is far from the Blasius profile. Therefore, we did not consider boundary-layer
thicknesses of less then 0.6h at the trailing edge. For the tab, we consider the following
non-staggered cases (see figure 1a for the tab configuration): in the case of δ/h= 0.6
(h/θ = 14.3), lx/h= 0.05, ly/h= 0.2, 0.5, 0.6 and 0.8, lz/h= 0.2 and λ/h= 4.0; in the
case of δ/h=1.2 (h/θ = 6.67), lx/h= 0.05, ly/h= 0.2, 0.5, 0.7, 0.8 and 1.0, lz/h= 0.2
and λ/h= 4.0.

Figure 16 shows the spanwise distributions of the base-pressure coefficient at y =0
for the flows with and without tabs. For δ/h= 0.6 (figure 16a), all the cases considered
increase the base pressure. On the other hand, for δ/h= 1.2 (figure 16b), the case of
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(b)

(a)

Figure 17. Instantaneous vortical structures in the wake (Re= 320 and δ/h = 0.6):
(a) uncontrolled flow; (b) non-staggered multiple tabs of (lx/h, ly/h, lz/h, λ/h)= (0.05, 0.6,
0.2, 4.0). Three-dimensional views of iso-λ2 surfaces are shown.

ly/h= 0.2 decreases the base pressure, but other cases increase the base pressure. The
increase in Cpb is larger near the spanwise location of the tab than at other spanwise
locations, which is similar to what was observed from the present experiment and
LES. Note that the optimum tab sizes in the present laminar flows (ly/h= 0.6 and
0.7, respectively, for δ/h= 0.6 and 1.2) are much larger than those in the experiment.
This is due to different characteristics of separating boundary layers (see § 4.2 for
further discussion). The decrease of base pressure by small tabs has already been
observed in the present experiment (figures 4 and 5), but this tab in this laminar flow
is much larger than those observed in the present experiment because of different
separating boundary-layer characteristics.

In Darekar & Sherwin (2001), where a wavy square cylinder is considered at
Re= 100 with a varying spanwise wavelength (L) and peak-to-peak wave height (w),
the flow becomes steady at the optimal values of w and L for achieving maximum
drag reduction. Kim & Choi (2005) show that the flow becomes steady at the
optimal spanwise wavelength of distributed forcing for flow over a circular cylinder
at Re= 100, but remains unsteady at higher Reynolds numbers. In the present case,
the flow remains unsteady even at the optimal tab configuration. This seems to be due
to a higher Reynolds number being considered in this study than those by Darekar &
Sherwin (2001) and Kim & Choi (2005).

Figure 17 shows the instantaneous vortical structures for the flows without and with
the tab (ly/h= 0.6, lz/h= 0.2, λ/h=4.0). Typical two-dimensional Kármán vortex
shedding is clearly observed in the uncontrolled flow (figure 17a). With the tab
(figure 17b), the Kármán vortex cores are torn into three-dimensional vortices and
their strengths are weakened. Furthermore, strong vortical motions right behind
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Figure 18. Time sequence of vortical structures behind the bluff body with the non-staggered
multiple tabs of (lx/h, ly/h, lz/h, λ/h) = (0.05, 0.6, 0.2, 4.0) (Re= 320 and δ/h = 0.6):
(a) tu∞/h = 0.2; (b) 2.75; (c) 8.25; (d) 16.5. Shown in this figure are the top view of
the iso-pressure surfaces (left-hand column) and contours of the spanwise vorticity on the
(x, y)-planes at z/h =0 (middle column) and z/h = 0.53 (right-hand column). The time interval
of tu∞/h = 2.75 corresponds to about half the vortex-shedding period of the uncontrolled flow.
In the left-hand column, the dark- and light-grey colours denote vortical structures shed from
the upper and lower trailing edges, respectively.

the bluff body disappear with the tab. With these flow changes, the base pressure
substantially increases. These flow changes are very similar to those observed in LES.

Figure 18 shows the time sequence of vortical structures behind the bluff body after
the tab is suddenly installed at t = 0 to an instantaneous uncontrolled flow. Until
tu∞/h= 0.2 (figure 18a), the initial base flow (i.e. flow without the tab) is not much
affected by the tab and the vortex shedding at z/h = 0 is in the same phase as that at
z/h = 0.53. In other words, the vortex shedding is nominally two-dimensional at this
time. However, at tu∞/h= 2.75 (figure 18b), the wake structures near the base surface
at z/h = 0 are completely modified owing to the tab. The interaction between vortices
shed from the upper and lower trailing edges is weakened owing to a larger wake
width. On the other hand, the vortex shedding at z/h = 0.53 is still not much affected,
even at this time. At tu∞/h= 8.25 (figure 18c), the vortex shedding alternately
occurring from the upper and lower trailing edges nearly disappears behind the tab
(at z/h = 0) and vortical structures become three-dimensional. The vortex dislocation
occurring at the spanwise location of z/h = 0 is manifest from figures 18(b) and
18(c), which results in the weakening of vortical strength and increases the base
pressure. With a further lapse in time (figure 18d), the shear layers at the upper and
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lower trailing edges roll up farther downstream and the alternating nature of vortex
shedding is attenuated. This vortex evolution in time is similar to that shown in LES.
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